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ABS TRACT

The State Rate Feedback Implicit Model Follower control

concept is examined in detail from a classical and modern

control theory viewpoint. State Rate Feedback Implicit Model

Following (SRFIMF) is a concept whereby control of the dynamic

response of a system is achieved by the measurement and feed-

back of a state rate, normally acceleration. In addition to

a basic description of the concept, emphasis is placed on the

effect of noise in the measurement of the required feedback

quantities. Control of the pitch attitude of the AV-BA Harrier

VTOL aircraft is used as an example of the application of the

control concept. The model of the Harrier used in this study

includes the effect of both sensor measurement errors and gust

load inputs.
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I. INTRODUCTION

A State Rate Feedback Implicit Model Following (SRFIMF)

flight controller has been proposed as a possible approach to

improving the handling qualities of Vertical and Short Field

Take Of f and Landing (VSTOL) aircraft by Merrick at the NASA

Ames Aeronautical Research Laboratory [1, 2]. The SRFIMF

concept has potential applications in various types of control

problems encountered in aircraft design, among which are

attitude, guidance, and engine control. The concept has not

been used in actual flight tests, however several detailed

simulations [2, 3] have been conducted at NASA Ames in which

SRFIMF control was applied. The most notable features of the

control scheme are that:

1. The Input-output relationship of a system using SRFIMF

control is insensitive to changes in airframe and propulsion

dynamic characteristics.

2. The dynamic relationship of the output to the input is

approximately that of a second order system whose frequency and

damping is chosen by the designer.

3. The system is self trimming and the commanded output

variable is independent of external disturbances.

4. The system has good gust alleviation.

This study presents a detailed analysis of the SRFIMF control

% concept as applied to the attitude control of VSTOL aircraft.
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The following discussion is given to clarify the meaning

of State Rate Feedback Implicit Model Following as used in

this study. Model following refers to the ability of a con-

trol scheme to impart specified dynamic characteristics,

given by a model, to the closed loop system. The model being

considered here is a second order response in which the param-

eters of natural frequency and damping ratio are chosen by the

designer. Typically a second order response is mathematically

defined in terms of the states position and velocity. The

state rate of the second order model is the acceleration. The

State Rate Feedback Implicit Model Following controller,

studied here, achieves model following by measurement and

feedback of the system's state rate, acceleration. The result

is that a priori knowledge of the plant is not required to

produce model following.

To illustrate the use of state rate feedback, consider a

plant of second order. With the states of the system X 1 and

X 0defined as position and velocity, the representation of

the plant in matrix notation is

Xl1

1 c b1  U(t) 1-1
2 The -b X2~ + [

Teacceleration, Kequation is thus

2 -cX 1 -bX 2 + U(t) 1-2

16



The values of b and c define the dynamic behavior of the plant.

Design of a control system would in general require that b and

c be known. The feedback scheme or control law of the SRFIMF

controller is formulated so that the plant dependent quantities

of b and c are only involved in the total quantity of (-cX 1-bX 2).

With this arrangement the quantity, (-cX 1-bX 2), can be obtained

by measurement of the state rate, acceleration, minus the

input, U. Model following by measurement of the state rate,

as in this illustration, is the basic concept of the SRFIMF

controller.

The intent of this study is to provide a detailed analysis

of the SRFIMF controller from a modern and classical control

viewpoint. Particular emphasis will be placed on a basic

description of the control scheme and the effects of measure-

ment errors on the output of the closed loop system. The

first two sections deal with a classical analysis of the

controller as applied to the attitude position control of a

general VSTOL aircraft. The third section considers the effect

of measurement errors on the system from a modern control

viewpoint. From that analysis, the steady state covariance

of the state variables, as a result of measurement uncertain-

ties, will be found. Finally, the previously developed analy-

sis technique will be applied to an example where SRFIMF is

used for pitch control of the Harrier aircraft. The effect

of sensor errors will be examined and the response of the

Harrier to gust inputs will be determined.

17



The following assumptions are made in this study:

1. The system is linear. Non-linear effects such as

control saturation and actuator hysteresis are not considered.

2. The dynamic response of the plant will be represented

at a single point by linearized, rigid-body, transfer functions.

3. Measurement uncertainties are represented as exponen-

tially correlated noise and the effect of bias error is not

considered. The basic description and development of the

SRFIMF controller will be considered in section II.

j 18



II. DESCRIPTION OF THE SRFIMF CONTROLLER

A. THE BASIC SCHEME

It is desirable for a flight controller to impart

specific dynamic characteristics to the closed loop response

of an aircraft system. Often the desired response is given

in terms of a natural frequency and damping ratio. Piloted

simulations at NASA Ames (2] have indicated that a desirable

response from the pilot's stick to the aircraft attitude is

a second order response whose natural frequency, wn , is

approximately 2 rad/sec and damping ratio, , of 0.75. One

possible approach to the design of an attitude controller is

to apply model following techniques. Mathematically the

model for attitude control dynamics can be represented by a

transfer function in the frequency domain. If, as an example

we let e(s) represent the aircraft pitch angle and 6(s) the

elevator control input, then the transfer function of a model

for pitch attitude control can be written as

e()2 2-1
6(s) s2 + 2wns + W

n n

In this example, if the desired response has a natural freq-

UI uency of 2 rad/sec and damping ratio of 0.75, and equation

2-1 becomes

%(s) _ 1 2-2
6(s) 2
(s s +3s +4

19
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This transfer function will be used to illustrate model follow-

ing techniques in the development of the SRFIMF concept. The

desired model response, given by 2-1, can also be expressed

in state variable notation with states Z of position and Z

velocity. The matrix of coefficients of the model is given

the symbol L and equation 2-1 can be written as

S= [L]Z + (B]U

-2  Z + U 2-3

Given somewhat arbitrary open loop plant dynamics, the object

of model following is to produce a closed loop system whose

dynamic characteristics are given by equation 2-1 or equation

2-3.

For a general system

=AX + BU
2-4

Y = CX

the object of implicit model following is to force the output

of the system to follow the model equation

z = LZ + BU 2-5

That is to say, the output, Y, should approximate Z (YzZ) so

that

Y LY + BU 2-6

By proper choice of the feedback gain F, as shown in figure

2-1, the output is forced to follow equation 2-6. The

20



implied model shown in the upper portion of the figure, is

not actually generated but implied by the behavior of Y.

IMODEL Fl Z

contoltchnius IL,B , r

[ PLANT X Y.

U: A,B -

(F] X :Z F:

F1

Figure 2-1 Implicit Model Following scheme

The formulation of the feedback law required in model

following has been determined by Taylor [4] using optimal

control techniques. In addition, Erzberger (5] has defined

algebraic methods for determining if perfect model following

can be achieved. This algorithm will be examined later in

this section. In aircraft applications certain physical

facts about the system allow a form of implicit model follow-

ing to be obtained by simple intuitive reasoning.

Consider the problem of stabilizing the pitch attitude

of a VSTOL aircraft. The following assumptions can be made

and will lead to a simplified SRFIMF controller:

2ii 21



1. The desired model response is of second order with

frequency, wn' of 2 rad/sec and damping ratio, ;, of 0.75

from equation 2-1.

2. Measurements of angular position, angular rate and

angular acceleration are available.

3. The control U is either a thrust or control deflection

whose net result is to produce angular acceleration of the

vehicle.

4. The open loop plant is arbitrary and the transfer

function for e, e(s)/U(s) = G(s), may be unknown.

5. The control law which produces model following will

be developed so that it represents the difference between

the vehicle's angular acceleration, as measured, and the

angular acceleration which would be implied by the model given

in 1, above.

From assumption 1 we obtain the desired closed loop response

as that of the model and express it as

e(s) 1 2-7

s + K.s + Kx x

where e(s) is the pitch attitude and the constants K and K.x x

are defined for convenience and will be used throughout thist
study as

K = 2r n = 3 2-8x n

2
K = 2 =4 2-9x n

22



By requiring the model, equation 2-7, to hold we observe that

the implied angular acceleration is

s26 (s) = -K 6 (s) - K~se (s) + U(s) 2-10

e(s) and se (s) are angular position and angular rates which,

by assumption 2, are available from measurements. The

quantity U(s) is the input to the open loop plant. Given

e(s), s8(s) and U(s), the quantity s26 (s) can be calculated

from equation 2-10.

We will define W(s) as the control law for the system.

W(s) will be taken as the difference between the implied model

acceleration s2e (s) and the actual measured acceleration

W(s) = s2 8(s) - (measured acceleration) 2-11

Using equation 2-10 and substituting for s2e (s) one has

W(s) = -K x (s) - Kse(s) + U(s) -XX 2-12

(measured acceleration)

Further the quantities 6 (s) and se (s) will be determined by

sensors so that

W(s) = - .(measured position) - Kk (measured

rate) + U(s) - (measured 2-13

angular acceleration)

r
~23



The quantity U(s) could be considered pilot or other control

input to the plant. Since we also defined W(s) as the control

there is some ambiguity in the notation. The symbol U(s) will

be used consistently for the control feedback quantity as

indicated in figure 2-2.

i(s)

F u Unknow s t oc on t r e e v o
by 1ant

p a t G (t aG(s) b ti, t n t heau la rei ,Ut

S cVelocit i a ieasurenelto

~.U(S)

Figure 2-2 SRFIMF position controller develoed
by intuitive arguments.

Figure 2-2 shows schematically the control law and unknown

plant G(s). It can also be seen that the plant input, U(s)

is a feedback quantity and the implied acceleration, s O(s)

is compared to the measured acceleration at point 2 of the

figure. The term state rate feedback is applied to this type

of control because of acceleration feedback. It is this

measurement which brings to the controller information about

the plant making a priori knowledge of the transfer function

for a (s) unnecessary. This aspect of the SRFI.MF controller

is most clearly seen by application of the Erzberger criterion

mentioned earlier.
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The Erzberger criterion for exact implicit model follow-

ing is obtained by analysis of the system in state space

representation where the system is given by

= AX + BU 2-14

Y = CX 2-15

For implicit model following the output is approximated by

= LY 2-16

Taking the derivative of equation 2-15, one has

Y= CX 2-17

Substituting from equation 2-14

Y C(AX + BU)

or 2-18

Y = CAX + CBU

but from equations 2-15 and 2-16 one has

Y = LY = LCX 2-19

so that one has, on equating 2-18 and 2-19,

CAX + CBU = LCX

or 2-20

CBU = (LC - CA).X
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Solving for the control, U, from 2-20 we have that

U CB[cB - (LC - CA)] X 2-21

where (CB) + is the pseudo, or generalized, inverse of (CB).

Eliminating U from 2-20 and 2-21, the condition for perfect

model following becomes

C(CB) (CB) + -I][ (LC) - (CA)] - X = 0 2-22

The use of the pseudo inverse is based on the property of the

pseudo inverse that (CB) (CB) + is an orthogonal projection

operator on the range of (CB). It then follows that if 2-22

holds for all X, the range of CB must contain the range of

(LC-CA). This implies that 2-16 is valid which has already

been assumed to be the case.

We will now apply equation 2-22 to the pitch attitude

controller given earlier. In this case 8(s)/U(s) is assumed

to be the transfer function of an arbitrary second order

system.

e (s) _ 16(s) 2
U(s) - 2 + bs + c

The desired closed loop performance is given by the model as in

equation 2-7. For this example we initially take the feedback

quantities to be angular position and angular rate. Defining

the quantities in state variable representation we have the

plant where

X = 8(t)

X= (t)
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i = [A] X + BU

=L : X2~ U 2-23

and

Y = CX

or

Y = 2-24

Calculation of the pseudo inverse depends upon the relative

rank of C and B in this case, following Noble [6], the pseudo

inverse of (CB) is given as

(CB) + = [ (CB) + (CB)-l (CB)T

From 2-23 and 2-24

(CB) 
1 1

therefore

(CB) + = [O 11

To determine if perfect model following is possible, we

substitute into 2-22 using 2-23, 2-24, 2-8, 2-9 and the

above for (CB) and (CB)+
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[(CB) (CB) + - I] = 2-25
0

[(LC) - (CA)] = 2-26
-(Kgx + C) -(K£ + b)

The result is that L

[(CB) (CB) + -I] [ (LC)-(CA)] 0 2-27

Equation 2-27 shows that perfect model following is possible

for all X using position and rate feedback only. The control

can be determined by equation 2-21 with the result

Uc = [(-K + c)(-K. + b)] 1 2-28x x 2

= -KxX1 -K.X2 + cX1 + bX 2  2-29

The control law given in equation 2-29 tequires that the

constants c and b be known in order to produce the desired

model following. In the previous discussion we stated that

the addition of acceleration feedback provided the needed

information about the plant. To show this, note that the

latter two terms of equation 2-29, cX1 + bX2, can be inter-

preted in terms of the acceleration of the system, X2, since

2 = -cX1 -bX2 + U(s) 2-30

one has

X2 -U(s) = -cX 1 + -bX 2  2-31
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or rewriting equation 2-29 one has

Uc = -K xX 1- K.02 + *)-k 2-32

We can compare this to equation 2-13 rewritten in the same

notation

W(s) = -K xX 1- K X2 + U(s) - (measured 2-33

angular acceleration)

Note, X1and X2are the measured angular position and measured

angular rate. This comparison shows that the measured accel-

eration supplies the terms needed for perfect model following

without a need for a knowledge of the plant dynamics.

The significance of this result is that state rate feed-

back can be used to provide information about the plant in

applications where the plant has unknown and changing dynamic

characteristics. This conclusion was reached based upon the

assumption that the plant was of second order. we shall now

consider a more general form of the SRFIMF controller and we

will show that model following can be achieved by measurement

of state rate for a higher order plant.

B. THE GENERAL FORM OF THE SRFIMF CONTROLLER

The preceding discussion presented an intuitive descrip-

tion of the principal operation of the SRFIMF controller and

the use of state rate feedback. It is the intent of this

section to develop a general form of state rate feedback and
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to show again that model following can be achieved without

a priori knowledge of the plant by using measurement of the

state rate. We begin by examining the basic SRFIMF controller

as developed by Merrick at NASA Ames. The block diagram of

this controller is shown in figure 2-3.

1

~i~sx(s)

Xc i Kx sl~l Plant

s+K X G(S)

x(s)

Figure 2-3 The general form of the SRFIMF
controller.

Assume that figure 2-3 represents a velocity controller, then

the feedback quantities X(s) and sX(s) are velocity and accel-

eration respectively. It can be seen that at position 1 we

are summing(- acceleration + U(s)). It will be shown that the

transfer function between the input Xc (s) and the output X(s)

does not depend upon the plant transfer function G(s) and

V! that the closed loop response is that of a second order system

whose damping and natural frequency are determined by the

choice of feedback constants Kx and K.
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From figure 2-3 W(s) is given by

W(s) = U(s) - sx(s) + [Xc(S) - x(s)].2-34

and for V(s) we write

V(s) = U(s) - sX(s) 2-35

from the definition of the transfer function G(s) we have

that

X(s) = W(s) G(s) 2-36

Combining 2-34 and 2-36 we have that

(X (s) - X(s)) K
X(s) ={U(s) - sX(s) + s + G(s) 2-37

Since U(s) = W(s) as seen from figure 2-3, we have

X(s) = U(s)'G(s) 2-38

and equation 2-37 can be rewritten as

X(s) = X(s) - sX(s)G(s) + (Xc(s) - X(s)) KxS + K. G(s) 2-39S + Kk

and

(Xc(s) - X(s)) Kx
sX(s)G(s) s + K. G(s) 2-40

x

G(s) on both sides of equation 2-40 cancels and the result

becomes

X(s) 2 K
X--- ) _ =  T 2-41

c s' + K;s + Kx1 31



Equation 2-41 shows that the closed loop response of the

SRFIMF is identically that of a second order system whose

natural frequency and damping ratio is completely determined

by the constant feedback gains which are given by

K.k

wn = Kx=

The results of this analysis indicate that the SRFIMF

controller is an excellent candidate for VSTOL aircraft

applications. The form of the controller shown in figure 2-2

could be used to control a position such as attitude while

the general form shown in figure 2-3 might be used to control

rates or velocity. It will now be necessary to examine the

requirements necessary to impliment a SRFIMF controller in

an aircraft. In particular, the exact relationship between

U(s) and W(s) must be considered. The next section will

examine practical examples of SRFIMF controllers in a realistic

aircraft environment.

C. PRACTICAL EXAMPLES OF THE SRFIMF CONTROLLER

Two types of controllers are illustrated in this section,

a position controller, figure 2-4, and a velocity controller,

figure 2-5. A first order actuator is included in the plant

Hof each controller. Also included is a compensator in the

control feedback loop involving U(s). The system is not

realizable without the compensator. These controllers will

be used in the analysis of this report.
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The plant is assumed to be driven by a control actuator

and because of that a phase lag can be expected to exist

between the commanded control signal, W(t) and the input of

the plant. The effect of the actuator will be modeled by

using the first order transfer function

H(s) 1 2-42
W(s) + i)2

where H(s) is the output of the actuator, W(s) is the input

and r is the actuator time constant assumed to be 0.1 sec

for all of the examples considered in this work. Recall from

a previous section that SRFIMF feedback contained a term U(t)

which represented the control input to the plant and that W(t)

was assumed to equal U(t). Because of the fact that U(t) was

equal to W(t) the output signal of the controller could be

used to cancel the U(t) term in the acceleration feedback.

It was shown that

acceleration = -cX 1 -bX 2 + U(t) 2-43

and it was assumed that

U(t) = W(t) 2-44
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In order for equation 2-44 to be valid, the system would need

to have instantaneous response to any input. Because of the

action of the control actuator this is not possible and a

compensator is placed in the feedback loop between W(s) and

the summing junction at 1, as shown in figures 2-4 and 2-5.

The compensator transfer function is A(s). A(s) is chosen so

that the output of the compensator is dynamically identical

to the input of the plant, after the control actuator. When

the control is represented by a first order lag, as in this

case, A(s) is the same as the transfer function of the actuator.

In cases of higher order actuator dynamics the result is more

complicated. An algorithm for determining the necessary

transfer function, A(s), which must be used in the feedback

is given by Merrick [2]1. We will assume a first order actuator

and a compensator of the form l/(ts + 1) as shown in figures

2-4 and 2-5, for the remainder of this work.

Actual controllers used at NASA Ames are illustrated in

figures 2-6 and 2-7. Figure 2-6 is a speed controller. The

quantities VD and VDD represent the measured speed and accel-

acceleration. VC is the commanded speed and W(s) is the

output of the controller. Figure 2-7 is a SRFIMF position

0, controller used to control the pitch attitude, 9, of the RTA

vehicle. The limiters seen in the figures are not included

in the model studied here. The purpose of the limiter is to

prevent the control feedback loop from acting as an integrater

when the plan control is saturated. This condition could occur
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when a large difference between the commanded variable, X,

and the input variable, Xc , existed and the plant control

was saturated. In this condition W(s) would increase with-

out bound and a reversal of the input would be delayed because

of the very high value of W(t) at the time the control reversal

was applied. The limiter was not considered here because of

the assumption of linearlity.

36



4LJ

Figure 2-6 SRFIMF controller employed on the RTA
for speed control.

7 K-

7-4 -1/ I-*l

Li-ie; I od.

Figure 2-7 SRFIMF controller employed on RTA for
pitch attitude control.
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III. TIME AND FREQUENCY DOMAIN ANALYSIS OF THE SRFIMF

A. REPRESENTATIVE AIRCRAFT PLANT DYNAMICS

The State Rate Feedback Implicit Model Follower controller

presented in section II, figure 2-4 will now be examined using

Root Locus, Bode Analysis and Time Simulations. Root Locus

analysis will show the asymptotic behavior of the closed loop

poles and Bode analysis will show the filter characteristics

of the controller. Simulated time response of the controller

will be shown in order to demonstrate the ability of the

SRFIMF to follow the given model and to show graphically the

self trimming feature of the controller. The model and repre-

sentative plant will next be defined.

The model for the system is taken as a second order system

with a transfer function given by

M(s) 2 x 3-1U-) s 2+ K.s + K
x x

The gains K xand K xare selected to yield two different models,

one a position controller and the other a rate controller as

shown in the following table.

wK K% Pole
n __Xx Location

Attitude Control 2 rad/sec .75 4 3 -1.5 1.32i

Rate Control 1.23 rad/ .7023 1.57 1.76 -.88 .89i

TABLE 3-1 Assumed Model Constants.
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The values listed in table 3-1 are based upon piloted simula-

tions at NASA Ames [2] and reflect what has been judged to be

representative of good handling qualities.

The plant transfer function is also taken as a second

order system

CPG
G(s) = 2 + 3-2

s + bs+ c

While initially this assumption may seem unrepresentative of

a real aircraft, proper choice of b and c can represent the

dynamic behavior of the individual modes of any aircraft,

provided that first order modes are taken two at a time. To

illustrate, consider the general transfer function

M

K TJ (s + Zi)
C(s) = i=l 3-3q r

s I (s + P TT ( 2 + 2  W s + W2
J=l K=1

If the goles are distinct then equation 3-3 can be expanded

into partial fractions as follows

q a r )+CW 2

C(s) a + + b E(s + I K KK K n
s J=l s + P j K=I s2 + 2 KWKS + K

3-4

It can be seen from the above that the response of a higher

order system is composed of a summation of first and second

order terms. When the first order terms are taken two at a
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time, the total system response can be expressed as the sum

of only second order terms with constant numerators. The

assumption of linearity allows us to analyze the modes

independently. It remains to choose values of b and c which

represent typical aircraft modes. To do this, it will be

necessary to survey several representative aircraft. From

this survey a number of modes will be selected as typical of

VSTOL applications. It will be assumed that acceptable control

of each of the modes will lead to acceptable control of the

system. This method of analysis leads to considerable

simplification since it allows the plant to be taken as a

second order system. While this simplified plant will serve

the majority of the analysis, a more complex plant will be

examined in section V.

Table 3-2 is a listing of pole locations for selected

aircraft. Figure 3-1 is a sketch of these poles in the complex

plane and an assumed envelope of VSTOL pole locations. Table

3-3 lists points which will be considered by time simulation.

From this list, four representative modes will be examined by

root locus.
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AIRCRAFT FLIGHT CONDITION FREQUENCY/OAMPING OSCILLATORY POLES REAL POLES

% Re. Im. I/TI  /T2
F106 S.L. M.2 2.42 .62 -1.5 1.9 -.169 -.59

Lateral/Directonal 20,000', -.9 3.01 .159 -.48 3.0 -1.84 +.006

A4 S.L. M-.2 1.56 .31 -.48 1.5
short periodLongi tudinal

long period 1.52 .087 -.013 .15

15,0001, M-.9 .623 .344 .20 .685
short period

long period .12 -.073 +.01 .12
A4 S.L. M-.2 1.89 .05 -.09 1.89 -.065 -.56

Lateral/Directional 15,000'. M=.9 6.61 .096 -.641 6.6 -2.48 -.006

VZ4 0 kts. .731 -.439 +.32 .66 -.82 -.137

Longitudinal 26.5 kts. 2.16 .4 -.086 .20

75.6 kts. 3.4 .374 -.127 3.4
short period

long period .316 .346 -.11 .30

VZ4 0 kts. .669 -.347 +.30 .63 -.65 -.90
Lateral/Directional 75 kts. 1.59 .421 -.67 1.4

41) 0 kts. .43 -.250 +.10 .42 -.69 -.87
(helo)

115 kts. .38 -.043 +.016 .40 -.9 -1.05

Harrier 0 kts. .31 -.48 +.148 .27 -.33 -.02

Longitudinal 60 kts. .32 -.91 4.30 .13 -.073 -1.0

Harrier 0 kts. .52 -.50 4.26 .45 -.015 -.58

Lateral/Oirectional 60 kts. 1.2 -.28 +.336 1.15 -.068 -1.26

120 kts. 1.8 -.15 +.27 1.78 -.056 -1.73

Table 3-2 Typical aircraft pole locations where the
characteristic equation has the form

(s + l/T1 ) (s + l/T 2 ) (s2 + 2 nS + w ) = 0

Source: References [4 & 6]
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Mode # Real Im. b c

1 -.6 3. 1.2 8.64

2 -.15 2.15 0.3 6.23

3 -.3 1.0 0.6 0.91

4 -0.1 0.3 0.2 0.08

5 -0.2/0. 0.2 0.0

6 0.3 1.5 -0.6 2.16

7 0.3 0.0 -0.6 0.0

8 0.1 0.14 -0.2 0.03

9 0.0 0.0 0.0 0.0

10 -1.0/ 1.6 0.6
0.6

Table 3-3 Aircraft modes used in simulations.
The modes were choosen to be typical of
VSTOL aircraft as seen in figure 3-1.
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B. FREQUENCY RESPONSE AND BODE ANALYSIS

The object of Bode Analysis is to examine the frequency

response characteristics of the SRFIMF controller. It will

be necessary to develop the transfer function of the position

controller shown in figure 2-4. The plant transfer function

is given in general as

X(s) CPGG(s) = ..
s + bs + C

As in earlier sections the control actuator transfer function,

H(s), is assumed to be of the form

H(s) = 1 3-5(s + I)

The transfer function of the plant is given by G(s), the

output position, defined as X(s) and the commanded input is

X c(s). The compensator shown in figure 2-4, and described

in section 2-3 is

A(s)1 3-6

(s + 1)

From figure 2-4 we can write at point 1, the equation

V(s) = A(s)W(s) - s2X(s)

2where s X(s) is now the acceleration feedback. We write the

control quantity, W(s), from figure 2-4 as

% W(s) = U(s) - KvsX(s) - K [-X(s) - X (s)] 3-7
x x c
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and also note

x(s) = K-G(s)-H(s).W(s) 3-8

Combining and rearranging the above expressions we have

that

Xc(S)K x  (I - A(s)) 1 s2  -X(s)c K" G(s)H(s) + s + Ks +K

and further rearrangement leads to the transfer function for

the input-output relation
Kx

X(s)
xc (s- ) 1 +__ 2 +K.s+K 3-9( - ] G(s) H(s)+ x x

It will be convenient to separate the constant plant gain,

CPG, from the plant transfer function. The remaining transfer

function, defined as G' (s), has a unity constant gain. Stated

another way

G(s) = CPG.G' (s) 3-10

The parameter KRL is thus defined as

KRL = K-CPG/T

Substituting for A(s), H(s), and KRL and, rearranging 3-9 we

are left with

KRL.K
X(s) x 3-12
X c(s) - s + KRL (32 + K xs + K X

Equation 3-12 shows the effect of the SRFIMF gain parameter,

KRL. As KRL increases, the model term (s2 + Kx s + Kx ),
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becomes more dominant in the closed loop transfer function.

Using equation 3-12, we can examine the frequency response of

the controller.

Assuming the plant transfer function to be a second order

system given by G(s), equation 3-2, equation 3-12 can be

rewritten as

X(s) _ KRL Kx
Xc(s) s + (KRL + b)s 2 + (KRL K. + c)s + K.KRL 3-13

The dominant effect of KRL in equation 3-13 is again seen in

the coefficients of the s and s2 terms. From table 3-2 we see

that a likely range in the values of b and c are -0.6-b1.6

and O.OSc:8.64. If KRL is of the order of 25 and b and c are

in the range of 2 and 8 respectively, then KRL will dominate

the terms of equation 3-13 which contain b and c. Equation

3-13 can be simplified by neglecting b and c with resulting

transfer function for the closed loop system written as

X(s) KRL"Kx

X (S)-3c s + KRL(s + KRL Ks + Kx ) 3-14

From this later representation it is clear that the plant

dynamics which were determined by the coefficients b and c no

longer play a role in the frequency response analysis.

Equation 3-14 expressed in Bode form becomes

X~s) KRL'Kx
X(s) 3 2 x 3-15~~X (s)32
c (iw) + KRL(iw) + KRL KA(iw) + KIRL Kx
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Equation 3-15 was plotted for frequencies from .01 to 100

and for KRL values of 1, 10, 25, 50 and 100. Figures 3-2 to

3-6 are the plots of the frequency response of the closed loot)

system. It can be seen that the frequency response of the

system is that of a low pass filter with a break frequency of

around 3.0 and a 40 db/Dec roll off. it is also seen that the

response is very nearly in phase with the input for frequencies

lower than 3.0. The results of the frequency response analysis

show that the controller possesses good frequency response

characteristics from the input to the output in that it has a

flat response for all input frequencies of intejLest and little,

if any phase shift. It has also been shown by Merrick [2] that

the controller attenuates plant disturbances in the form of

applied accelerations. The question of control disturbances

will be examined from a different point of view in section V.

We shall now consider the requirements for the gain, KRL, by

root locus analysis.

C. ROOT LOCUS ANALYSIS

The intent of the root locus analysis is to determine the

magnitude of the SRFIMF controller gain parameter, KRL, neces-

sary for acceptable model following. Plots of the root locus

h of the oscillatory pole will show that the desired closed loop

pole location is approached asymptotically as KRJ is increased.

Acceptable performance is determined by the specific applica-

tion for which the SRFIMF controller is used. We begin by

examining the equations for the closed loot, system developed

in the preceeding section.
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The characteristic equation for the system can be obtained

by setting the denominator of equation 3-13 to zero. The

resulting equation is

s3 + (b +KRL)s 3 + (c + K. KRL)s + KRL.Kx = 0 3-16

At least one root of 3-16 must be real and the factor corres-

ponding to the real root is defined as (s + f). Assuming that

the system described by the transfer function, equation 3-13,

represents a model following system, then the second factor of

3-16 must be given by the model. In other words, assuming

perfect model following, equation 3-16 must factor as

(s +f) (s2 + Kks + Kx ) = 0 3-17

As KRL becomes large, the SRFIMF closed loop system response

does approach perfect nodel following, and it can be stated

that as KRL increases the condition is approached where

+ (b + KRL)s 2 + (c + K.KRL)s + KRL • K -x x

(s + f)'( s 2 + Kks + Kx ) 3-18

In other w¢ords, the dynamic behavior of the system's oscilla-

tory mode is approximately given by the model parameters K.

and K x . Expanding the right hand side of 3-18 we have for

increasing KRL

+ (b + KRL)s 2 + (c + KKRL)s + KRL.K x

s 3+ (K. + f)s 2 + (Kx + Kkf)s + fK x  3-19
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Comparing coefficients reveals that for increasing KRL

b + KRL-wK. + f 3-20a

C + K.KRL -K.f + K 3-20bx x x

KRL -- f 3-20c

The relationships of 3-20 are not equalities, but they indicate

that while KRL is increasing, the difference between KRL and f

remains finite.

Therefore, it can be said that one real pole is on the

negative real axis and its location is approximated by the

value of KRL since f is approaching KRL as KRL becomes large

relative to b or c. To examine the behavior of the oscillatory

pole as KRL is increased, it will be necessary to rearrange

equation 3-9 into root locus form. Setting the denominator of

3-9 equal to zero yields

-As) Gs1 + s2 + K-s + K = 0 3-21
K HsGs)x x

Substituting for A(s), H(s) and G(s) and rearranging, the

general relation for the rool locus is

0 = 1 + KRL (s 2+ K s + Kx) G(s) 3-22
s

where G' (s) is an arbitrary plant transfer function divided

by its constant gain, CPG, as was shown by equation 3-10.
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Equation 3-21 will now be used to determine the root locus

for the position controller where G'(s) is given by one of four

of the modes assumed to be typical of VSTOL aircraft as listed

in table 3-4. The cases considered are

Mode # from

Table 3-2 b c

Case 1 6 -.6 2.16

Case 2 3 .6 .91

Case 3 9 0 0

Case 4 10 1.6 .6

Table 3-4 Plant Parameters for Root Locus Analysis

The root locus computer program developed by Melsa and

Jones [7] was used to evaluate and plot the root locus given

by equation 3-21. The gain constant, KRL, was varied from

0 to 100. The resulting root locus trajectory of the oscilla-

tory poles for the four mode cases are shown in figures 3-7 to

3-10. From the figures it can be seen that in all cases the

oscillatory pole approaches the desired value given by the

model, in this case -1.5, 1.32i. Because of scaling, the real

pole described earlier is not shown in the figures. It can

also be seen that the pole location of the closed loop system

is within 5 percent of the desired value for KRL of between

25 and 50. Although a value of KRL equal to 25 is normally

sufficient, a KRL value of 50 will be used for the remainder

of this work.
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KRL = 5.0
REAL POLE = -2.26

\

25L

REAL POLE = -4.0
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-1.35

KRL =20

is REAL POLE =-17.0

KRL 14- KRL = 99.12 KL

REAL POLE =-96.0

iiiKRL =50

KRL= 0

-2M -2.0 -1.5 -1.0 -0S 0.0 OS

Figure 3-8 Root locus of the oscillatory pole of a SRFIMF posi-

tion controller. The open loop plant has two poles at the origin.
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-2, -2.0 -1.5 -1.0 -M 0.0

Figure 3-9 Root locus of the oscillatory pole of a SRFIMF con-
troller. The open loop plant has a natural frequency of .95
rad/sec and damping ratio of 0.475.
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KRL = 5.0
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KRL = 99.12
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Figure 3-10 Root locus of the oscillatory pole of a SRFIMF posi-
tion controller. The open loop plant has real poles at -1.0 and

5-.6.
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The root locus behavior of a more complex plant will be

shown in section V where the SRFIMF controller will be applied

to a transfer function of the Harrier aircraft. The system

will next be simulated for each of the sample VSTOL aircraft

modes listed in table 3-2.

D. SRFIMF SIMULATIONS

The simulated response of a plant under the control of

SRFIMF position controller was done for all ten of the typical

VSTOL aircraft modes listed in table 3-2. The time histories

were generated using the CSMP program, reference [6]. The open

loop plant for each of the ten systems was assumed to be of

the form

G(s) = X(s) CPG
s + bs + c

with CPG = 1 and b and c given in table 3-2.

The model was as assumed in section II, a second order

with a natural frequency of 2 rad/sec and damning ratio, of

0.75. The constants K. and Kx were 3 and 4 respectively as

determined by equations 2-8 and 2-9. The simulation of the

model response is shown in figure 3-9. The rise time of the

modeled response is approximately 1.2 seconds. The model

response has a slight overshot (2.9 percent) with a peak time

at 2.4 seconds. Settling to within 1 percent occurs immediately

after the peak response. For the simulations, KRL was taken to

be 50 and the actuator time constant, T, was 0.10 seconds. The
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input to the system and to the open loop plant was a unit step

function, representing Xc, at t = 0. A sample listing of the

CSMP source code is given in Appendix A.

Figures 3-11 to 3-21 show the time histories of the open

and closed loop response of each of the ten simulated systems.

It can be seen from the figures that the closed loop response

of each system is indistinguisable from the model response.

Figures 3-11 to 3-21 graphically show that the response of the

closed loop system is approximated by the model response regard-

less of the plant being controlled. In addition, the self

trimming feature of the controller is seen. In all cases the

steady state value of the output of the closed loop system is

the same as the input, Xc , namely 1.

b
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IV. SENSOR NOISE ANALYSIS

A. SRFIMF STOCHASTIC MODEL

The SRFIMF controller relies upon measurements to produce

model following. We shall now examine the effect of measure-

ment uncertainty on the operation of the closed loop system.

In order to accomplish this we will consider a position con-

troller with a representative second order plant given by

G~s)= 2CPG4-
G s)=~ + bs + c -

The position controller will be augmented with sensor noise

sources and the observability and controllability of the

closed loop system with these noise sources will be analyzed.

Errors in the state variables will be determined by covariance

analysis using the Lyapunov equation.

The measured quantities that are considered to be contamin-

ated by sensor noise are the attitude position, attitude rate

and attitude acceleration measurements. Two types of sensors

will be considered. one is of high accuracy and typical of

good quality inertial navigation system measurements. The

second is of lower accuracy and might be considered typical of

strapdown sensors. Sensor errors are assumed to be of two

types, bias and high frequency. Bias errors are usually small

relative to measured quantities and they are of constant value.

Bias errors have little effect on the dynamic behavior of the

control system and will not be considered in this study.
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High frequency errors can be modeled in various ways. It

is assumed that the sensor noise sources can be modeled by

exponentially correlated noise. Exponentially correlated

noise is obtained by passing Gaussian white noise through a

first order shaping filter. A first order filter is repre-

sented by the differential equation

= -1/T r + Wt(t) 4-2

where Wt(t) is a scalar white, zero mean, Gaussian noise of

constant strength, p. p is chosen so that the steady state

value produced by the filter is the square of the sensor error
2

standard deviation, a Following Maybeck [9], the required

value of U as the input to the filter is given by

= 2a 2/Tr  4-3

where Tr is the correlation time of the exponentially correla-

ted noise. Figure 4-1 is a schematic representation of a

typical shaping filter, in Laplace transform notation. E(s) is

resulting exponentially correlated noise.

s + l/T r  b (S)

Figure 4-1 Exponentially correlated noise
shaping filter
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The standard deviation, a, of the sensor error is a function

of the sensors. The values of a and Tr were obtained from a

study by Analytical Mechanics Association (AMA), reference [lu,

in which an aircraft using a SRFIMF controller was studied.

Table 4-1 is a list of the standard deviation estimates which

were obtained from the AMA study. Also based upon the AMA

study, we assume a value of Tr to be 10 seconds for both sensor

models.

Strapdown Inertial

Attitude position, a 10 0.10/p

Attitude rate, a 0.50 /sec 0.50/secv

Attitude acceleration, a 10/sec2  0.1/s 2

(Tr = 10 seconds in all cases)

Table 4-1 Sensor error model parameters

The position controller shown in figure 2-4 is augmented

with the sensor error sources and the resulting system is

shown in figure 4-2.

To analyze the closed loop controller, we first obtain

the state space representation of the plant given by equation

4-1. Taking position and velocity as the state variable of

the plant we write

Position = X1  4-4a

Velocity = x1 = X2 4-4b

Acceleration = X2 = -cXl - bX 2 + CPGX 3  4-4c
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From the figure we can write the control law W(s), with

X = 0 as
c

W(t) = -K x(X 1 + X7)-Kk(X 2 + X5)-(-cXI-bX2+CPGX 3 +X6 ) + X4

= (-Kx + c)X 1 + (-Kk + b)X 2 - CPGX3 .4  - KkX 5 -

X6- KxX7
6 x 74-5

The remaining first order differential equations, obtained

from figure 4-1, are given as

3 = -1/TX 3 + K/TW(t) 4-6a

X4 = -1/TX 4 + I/-rW(t) 4-6b
X= -1/TrX5 + 202/Tr 4-6c2

= -1/T X + 22 /T 4-6d
6 r 6 a r

X = -1/TX 7 + 2a /T 4-6e
7 pr

Combining equation 4-4, 4-5 and 4-6 and expressing the system

in matrix forml we have the closed loop system whose inputs

are the random sensor noise quantities given by

X = [A] X + [B][Q]
4-7

Y = [c] x

where ap v, and aa are the standard deviation of the position

measurement error of the velocity measurement error and of

acceleration measurement error respectively and [Q ] is the

matrix of input white noise powers given by

2
i 2ai/Tr

*Matricies A, B, Q and C are shown on following page.
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Having the matrix representation of the closed loop controller

being driven by the sensor noise inputs, we can analyze the

effect of the sensor error by considering the controllability

and observability of the system with respect to the noise

inputs and outputs of position, velocity and acceleration.

The linear control system computer programs, developed by

Melsa and Jones [71, were first used with the result that the

system is both observable and controllable. In order to gain

a better understanding of the controllability and observability

of the system, a second approach, following a method suggested

by Bryson [111, was used. In the later method we decouple the

system of equations by diagonalizing the system given by equa-

tion 4-7. This produces a system of equations in modal

coordinates. The diagonalization procedure requires that we

calculate the eigenvalues and eigenvectors of the A matrix.

The transformation matrix, T, from the original coordinates

to the new coordinates, is obtained by normalizing, in a com-

plex sense, the matrix of eigenvectors. The matrix quantities

corresponding to the modal coordinates are denoted with a

superscript, * The system, in modal coordinates is expressed

as

X* = A*X* + B*Q 4-8a

Y = C*X* 4-8b

and the transformation is as follows

X = T-X 4-9a

A* = T 1AT 4-9b

B* = T- B 4-9c

C* = CT 4-9d
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We will now apply the above coordinate transformation to

examine the observability and controllability of the system

when the plant is a specific second order system.

For this example we chose one of the representative VSTOL

second order plants given by mode number 6 of table 3-2. The

transfer function for this plant is given by

1
G(s) = 2 + 4-10

s + .6s + 2.16

We will assume the following additional parameters

t = .1 sec, K = 4, K = 3, K = 5, T = 0 secx x r

with these choices the gain parameter KRL is

KRL = K CPG/t = 50

Because the system is linear with respect to the noise inputs

we can solve the problem in general assuming a unit value for

the individual noise standard deviations, or

ap =v = a = 1

where a p, v and a a is the standard deviation of the position,

velocity and acceleration measurement error. The original

system and the resulting diagonalized system was determined by

a fortran computer code called MODAL, listed in Appendix A.

The results are given

X = AX + BQ X* = A*X* + B*Q

Y = CX Y = C*X*

Matricies A, B, C, A*, B* and C* are shown on the following pages.
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It is instructive to observe the A matrix of the system.

In the upper right corner, rows and columns 1 and 2 represent

the plant. Row 3 is derived from the controller terms,

K-W(t)/T. These terms dominate the matrix.

The diagonal elements of A* are the eigenvalues of the

original system. All of the eigenvalues are negative, indicat-

ing that the system is stable. The system has one coupled

oscillatory mode, -1.56, 1.34 in the upper right corner of A*.

This mode corresponds to the model and will be referred to as

the model mode throughout the remainder of this study. The

eigenvalue -47.48, row 3 column 3 of A*, is the mode which

represents the output of the controller. We refer to this as

the controller mode. It physically represents the real pole

whose location corresponds to the value of KRL as discussed

in the root locus analysis of section III-C. Similarly the

eigenvalue -10.00, row 4 column 4 of A*, is the compensator

mode. The other three eigenvalues correspond to the noise

filter time constant, -l/T . From the transformed system,r

the controllability and observability of each of the previously

mentioned modes with respect to the noise input can be

determined.

In the B* matrix the Qv above the first column indicates

that column 1 is the input vector corresponding to velocity

error measurement input. The other columns are annotated

similarly. The first two rows of the B* matrix indicate that

the model and controller modes are affected by all three
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measurement errors and that acceleration measurement error is

least significant. The zeroes in row 4 of the B* matrix

indicate that the compensator mode is unaffected by measure-

ment noise. This indicates that the compensator does not

contribute to the uncertainty of the system.

The C* matrix has been annotated in a way similar to B*

so the X*, X*, and X* correspond to the velocity, acceleration,
v a p

and position error modes respectively. From the C* matrix it

is seen that the observation of position, corresponding to the

first row of the matrix, is affected by all three measurement

errors but that velocity and acceleration are only slightly

affected. We conclude from the C* matrix that measurement

errors will affect the position, which is the quantity being

controlled, but that the dynamic behavior, velocity and accelera-

tion are only slightly affected. This result is perhaps due to

the low frequency error model which results from the choise of

T requal to 10 seconds.

From the modal analysis it is concluded that sensor errors

can affect the model and controller mode of the closed loop

system and that the errors can be observed in the measurement

of the position. The exact relationship between the output

quantities of position, velocity and acceleration will be

determined in the next section where the varian~ces of state

variable X1 . X 2 f and X 3 will be found by solving the Lyapunov

equation for the system.
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B. COVARIANCE ANALYSIS

The object of the covariance analysis is to determine the

standard deviations of the error in the states X1 . X 2, andX3

of the system developed in the previous section. The standard

deviation of X1and X 2 are of interest because they represent

position and velocity tracking accuracy. X 3 is of interest

because it is the input to the plant. A large deviation in

Xdue to measurement error would mean unnecessarily high

amounts of control energy lost because of measurement errors.

The state variable representation of the system developed in

section 4-1, where the inputs to the system are noise sources

representing position, velocity and acceleration measurement

error, will again be used.

The problem of determining the covariance of the states of

a system in the presence of disturbances is typically encount-

ered in the design of optimal estimators, the Kalman filter.

In the estimator problem the system is expressed in the follow-

ing way

X = AX + BU + GW Ct) 4-11

where A is the matrix representation of the plant, B the control

input matrix, Wt(t) white noise disturbance to the plant states

with

E[Wt(t)] = 0 , E[Wt(t), WT ()

and G the input matrix of the disturbances. In estimation

problems one assumes that measurements of the system are made
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which can be expressed in terms of the states of the system

by the relationship

9N = HX + VN

Here N quantities are measured with an expected error of VN -

In the developement of the SRFIMF controller, sensor

noise was defined as a state of the system and the A matrix

was augmented to include these states. The covariance analysis

assumes quiescent operation of the controller, therefore, the

only input to the system is white noise of strength, U, given

by equation 4-3. The white noise acts only to disturb the

sensor error states. The governing equation for the covariance

of the states is given by the Lyapunov differential equation

P = AP + PAT + GQG T  4-12

where P is the matrix of the state variable covariances defined

as

Pij = a i

and Q is as before, the matrix of white noise input whose power

is . We have chosen to rename the matrix G of equation 4-11

to B because the white noise sources are considered to be the

inputs to the system.

Again a unit value of standard deviations was assumed and,

because the system is linear with respect to the noise inputs,

we can apply later the set of sensors. We will consider the
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same plant as used in section 4-1. The transfer function

for the plant is given by

G(s) _CPG -4-13

U(T s 2+ .6s + 2.16

At time equal to zero no uncertainties exist in the system,

therefore the initial condition on P is zero.

A computer program, vary, listed in Appendix A, was

developed to solve the Lyapunov equation. The program uses

an International Mathematical and Statistical Library (IMSL)

subroutine called DVERK. This subroutine solves a system of

first order differential equations using a Runge-Kutta

Algorithm. The resulting covariance matrix, P, is printed by

the program as a function of time, at a number of discrete

times. The diagonal elements of the P matrix are interpreted

as the square of the standard deviation or RMS value (a 2 ) of

each of the state variable uncertainties as a result of the

noise input. The data obtained from the computation of the P

matrix is plotted in figures 4-3 to 4-5 and tabulated in

Appendix B, table B-1. The figures show the standard deviation

(sigma) of the states X1, X2 and Xas functions of time from

zero to ten seconds. When necessary, the steady state value

is shown by a "+" on the figure.

Figures 4-3 to 4-5 can be interpreted in the following

way. Each individual curve represents the contribution to the

total state variable error as a result of one measurement
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source. For example, in figure 4-3 we see that a unit value

of standard deviation error in position measurement results

in a standard deviation error in X1of approximately 0.80 at

six seconds, and a steady state error of 0.980. The total

expected value of the uncertainty in X1is the sum of the

errors resulting from position, velocity and acceleration

measurements as given by

0= -' a. + ai + a. 4-14

Where the notation a i refers to the ith state variable and

j refers to a noise source. Thus, cprefers to the standard

deviation of X1as a result of position measurement error.

Table 4-2 summarizes the steady state values of the components

of the state variable errors.

Position measurement error .980 .360 2.13

Velocity measurement error .735 .270 1.60

Acceleration measurement error .245 .089 0.53

Table 4-2 Steady state errors as a result of
measurement errors

* The actual measurements are made either by inertial

navigation sensors or by strapdown sensors whose standard

deviations are given by table 4-1. We can now apply the

results obtained from the covariance analysis to obtain an

estimate of the state variable errors for actual measurement
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cases. For example, the steady state standard deviation of

the error in X1 when the measurements are made by an inertial

system is given as

q =  paP + qvalv + qaala 4-15

where q p, qv and qa are the standard deviations of the inertial

sensor measurements given by table 4-1 as

qp = 0.10

qv = 0.50/sec

qa = 0.l/sec
2

and 0 lpalv and ala are given in table 4-2. The resulting

expected error in X1 in steady state is found from equation

4-15 to be 0.490. In a similar way, the steady state errors

in X1, X2 and X3 for both inertial measurements and strapdown

measurements can be evaluated. The results are shown in

table 4-3.

X1  X2  X3

Inertial sensors 0.490 0.18 0 /sec 1.07°/sec2

Strapdown sensors 1.60 0.58 0 /sec 3.46 /sec 2

Table 4-3 Steady state tracking errors produced
by strapdown and inertial navigation sensors

The result of the covariance analysis indicates that the

expected uncertainity in X1 and X2 as a result of measurement

errors are not significant. For example, in the case of

strapdown sensors, the expected error in position, Xlis 1.60

89

r



while measurement errors had standard deviation values of

1 , 0.5 /sec and 1 0/sec.

To interpret the significance of the expected value of

the error in X V the value of X3will be determined when a 10

input is applied to the controller. Refer to figure 4-2 and,

for this example, disregard the effect of the control actuator

at the input to the plant. Assuming that initially the con-

troller is in steady operation with feedbacks equal to zero,

at the instant the 10 input is applied the value of X3is

determined to be

X = X *K *K = 20 4-163 c x

Comparing the value of the standard deviation in X3to the

value of X3when a 10 unit step input is applied to the con-

troller, we conclude that the value of the standard deviation

error in X3is only 17.3 percent of the value of X3when a 10

input is applied to the system.

From both the modal analysis and the variance analysis it

can be concluded that high quality acceleration measurements

are not necessary and that errors in the measurement of position

and velocity are not amplified. The errors in the states are

most affected by position measurement error. This result might

have been expected because the controller is attempting to track

to the commanded position and errors in the position measurement

should dominate the uncertainty in the other states. Figures

4-3 thru 4-5 show that the uncertainty in the states reaches a
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near steady state value in a short time, particularly in the

case of X . The rise time of the errors, seen in the figures,

should not be interpreted as a lag in the response, since the

figures represent the expected error in each of the states.

C. ALTERNATE MEASUREMENT SCHEMES

Two possible methods of reducing the number of measurements

required by the SRFIMF controller will be considered. The

first case is to measure acceleration and integrate to obtain

velocity and position. In the second scheme, position and

velocity will be measured and acceleration will be estimated

from knowledge of the plant. The second case will be used to

obtain an estimate of the added uncertainty caused by the

acceleration measurement. Figure 4-6 is a schematic representa-

tion of the first case. Az before the state representation of

the system is obtained.

I

Figure 4-6 First alternate measurement scheme. Measured
acceleration and implied position and velocity.
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The state variables are defined as

X, = position

X2 = velocity

X 3 = output of the control actuator

X 4 = output of the compensator

X 5 = velocity estimate

X 6 = position estimate

X 7 = acceleration error

The control input, from figure 4-5 is written as

W(s) = cX 1 + bX 2 - CPGX 3 + X 4 - KxX5 - X7  4-16

Following a development analogous to that used in section 2-3

we obtain the state representation of the system to be

X AX + BQ

0 0 0 0 0 0 0

c -b CPG 0 0 0 0

K-c/T b-K/-r -(CPG.K+I)/T K/-r -K.Kk/T -KKx//r -K/T

c/T b/t -CPG/T 0 -KX/t -KX/T -l/T

-c -b CPG 0 0 0

0 0 0 0 1 0 1

Li 0 0 0 0 -l/T

0

0 _

0

0
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We apply the modal computer program to this system using

the plant defined by equation 4-10 in order to determine the

observability and controllability. The resulting system in

modal coordinates is

X= A* X* + B*0

-47.48 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -1.56 1.34 0.0 0.0 0.0 0.0

0.0 -1.34 -1.56 0.0 0.0 0.0 0.0

= 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

$0.0 0.0 0.0 0.0 0.0 -10.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 -0.1

-1.07

17

-. 20

= -211.0

9989.68

0.0

237.0

a
0.0 -0.03 -0.05 0.46 0.0 -0.01 -0.42

= -09 [2: 0.24 0:09 0.0 0.0 -0.82.



From the A* matrix we can see that this system has two zero

eigenvalues meaning that the modes of the system which corres-

pond to the open loop integrators are neutrally stable. The

modal control vector B* indicates that the velocity and

position estimate modes of this system are strongly affected

by the noise input. In particular, mode five (row 5 of B*)

which represents the position estimate mode has a control

coefficient from the noise source four orders of magnitude

greater than the model mode (rows 2 and 3 of B*). We expect

that in this case acceleration sensor noise significantly

affects the performance of the controller.

Applying the algorithm used in the previous section to

this case we obtain the covariance estimate. Figure 4-7 is a

plot of the standard deviation (sigma) of X , X2 and X3 assuming

U.'

x 3

TI NE

%
iFigure 4-7 Error in XI , X 2 , and X 3 as a result of measurement

!| errors in acceleration.
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a unit standard deviation noise source as the acceleration

measurement error. Data used to plot figure 4-7 is also

tabluated in Appendix B, table B-2. It is seen from the

figure that acceleration measurement error causes unbounded

errors in X1 and X3. Unbounded errors in any of the states

are unacceptable in the controller and unless we can improve

the method of estimating the position and velocity, we will

be required to measure these quantities. A Luenberger observer

could be used to estimate position and velocity, however the

design of the observer would requre use of knowledge of the

plant. We wish to avoid using detailed knowledge of the plant.

The second alternate measurement scheme is the case of

measured position and velocity with acceleration estimated

from the plant parameters b and c. The estimation is given

by

Acceleration = -cX1 -bX2 + CPG X3  4-17

This scheme is shown in figure 4-8.
-- Acceleeation

X X2  X

~~CPG X

Figure 4-8 Second alternate measurement scheme, measured posi-
tion and velocity. Estimated acceleration.
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Following the same procedures as before we define the state

variable as

X, = position

X2 = velocity

X3 = output of the control actuator

X4 = output of the compensator

X5 = position measurement error

X6 = velocity measurement error

From figure 4-8 we obtain the control law W(t) as

W(t) = (-Kx + c) X + (-K +b)X2 - CPG X3 + X4

+ (-Kx + c)X 5 + (-Kk +b)X6  4-18

Assuming the same second order plant given by equation 4-10

we obtain the modal transformation of the system.
1

X = AX + BQ

Y = CX

X* = AX* + B*Q

Y = C*X*

Matricies A, B, C, A*, B* and C* are shown on the following
pages.
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The results of the modal analysis are similar to those

obtained when acceleration was a measured quantity rather

than calculated as in this case. The model and controller

modes are controllable from the noise sources. The position

and velocity outputs (rows 1 and 2 of the C* matrix) contain

sensor noise terms.

The covariance analysis results are shown in figures 4-9

to 4-11 and listed in Appendix B, table B-3. Here it is seen

that the standard deviation of Xj1 , X 2 and X3is slightly less

than in the case when acceleration was measured. This is

because the quantity taken to be acceleration does not contain

the additional error of actual acceleration measurement. In

this case the system requires only measurements of position

and velocity.

The second al-t-ernate measurement scheme can be used to

compare a state rate feedback control scheme to a state variable

feedback controller, from the viewpoint of increased uncertainty

in the state variable resulting from the additional measurement

of acceleration. To make the comparison, assume that the

measurements are made by strapdown type sensors whose measure-

ment errors are given in table 4-1. Table 4-4 lists the total

uncertainty of X1, X 2 and X3for both measurement schemes. It

can be seen from table 4-4 that the overall uncertainty of X

Xand X3is increased when acceleration is measured, as

% compared to the second alternate measurement scheme when

acceleration is obtained without measurement. In a practical
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x 2  x3

Second Alternate Measurement 0.75' 0.267 /s 1.6 s2

Scheme, Calculated Acceleration

Measured Acceleration 1.6' 0.58/s 3.46/s

Percent increase of expected 113% 117% 116%
error

Table 4-4 Steady state error in X1 , X2 and X3 for

measurements made by strapdown sensors.

system, uncertainty would exist in the knowledge of constants b

and c and it could be expected that this would result in addi-

tional uncertainty in the value of the state variables. It

might be possible that the uncertainty in the knowledge of the

plant could negate the advantage gained by estimating accelera-

tion as in the second alternate measurement scheme.

In conclusion, it has been shown that sensor noise does

not adversely affect the SRFIMF position controller. It was

also shown that acceleration measurement alone is not sufficient

for acceptable operation of the controller. The analysis tech-

nique used in this section will next be applied to the analysis

of a SRFIMF controller when the plant is assumed to be the

longitudinal axis of the Harrier aircraft.
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V. APPLICATION OF THE SRFIMF CONCEPT TO THE HARRIER AIRCRAFT

A. PITCH ATTITUDE CONTROL

The preceeding discussion dealt with the SRFIMF controller

with the plant assumed to be a general second order system.

In this section, the closed loop system will be modeled using

the transfer function of a VSTOL aircraft. For this purpose

the AV-8A Harrier, a jet-lift type VTOL aircraft, was chosen.

The stability derivatives and transfer functions were obtained

from reference [121. The SRFIMF controller concept will be

applied to the pitch attitude control of the aircraft and the

analysis will be similar to that done earlier when the plant

was assumed to be that of a second order system. As before,

we will examine the root locus, time response and the effect

of measurement errors. The effect of gust inputs to the plant

will also be considered.

The transfer function between the pilot's stick and the

pitch attitude of the Harrier, at 60 kts, 100 ft/sec, as given

by reference [12] is

e(s) 0.25 (s2 + .246s + .00756)d(s) s4

e ( + .4896s 3 - 4495s2 + .06736s + .00747 5-la

_6.25 (s + .21)(s + .036) 5-lb
2(s + 1)(s + .073)(s - .1864s + .1024)
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e(s) is given in radians and a e (s) in inches of stick

displacement. The above transfer function does not include

the effect of the control actuator which we include, as before,

in the model of the controller.

The denominator factors of equation 5-lb indicate that at

60 kts the Harrier has an unstable oscillatory mode with a

natural frequency, of 0.32 and damping ratio of -0.91, and that

the constant plant gain, CPG, is 0.25. The plant, given by

equation 5-1, is used to compute the root locus for the system

by applying equation 3-21, developed for the controller in

section III and rewritten here for convenience

KRL(s 2 + Kjs + Kx )
1 + S X G'(s) = 0 3-21

where G'(s) is the open loop plant given by

G'(s) = G(s)
CPG

For the root locus evaluation, KRL was varied from 1 to 100.

The value of the actuator time constant, T, was chosen to be

0.1 sec and K. and Kx were 3 and 4 respectively.x

The root locus of the oscillatory pole is given in

figure 5-1. The trajectory of this pole is similar to those

given in section III where the plant was assumed to be a second

order system. As before, the closed loop system oscillatory

poles are near those of the model (-1.5, 1.32) at KRL values

of about 25 and greater. Because of the scale of the figure,
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KRL 5/
KRL =3 KRL=1

REAL POLES
AT
-.036
-.200

/ -1.5
KRL = 1.4

.KRL = 10 REAL POLES:
-.036, -.201

KRL= 50 -1.6

SKRL 96.6

-1.521, 1.35

=25 REAL POLES AT
-.208, -.036

-93.8 KRL 0
REAL POLES

.10 AT
-.073
-1.0

ZEROS AT
-.036, -.20E

-2.0 -[S -I. -S 0.0 OS

Figure 5-1 Root locus of the oscillatory poles of the longitu-
dinal axis of the Harrier using SRFIMF position control. Note
that the open loop zeros are nearly canceled at KRL = 1.0.
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the real poles are not plotted, however their values are

listed on the figure for various values of KRL. At the final

value of KRL (96.6), the system's real poles were located at

-93.82, -.2079 and -.036. The pole at -93.28 corresponds to

the controller mode and its location is nearly equal to the

value of KRL. This result was discussed in section three.

The two other poles located at -.036 and -.2079 cancel the

open loop zeroes of the plant located at -.036 and -.21 as

seen in the open loop transfer function, equation 5-lb. Zero

cancellation by a pole could be very detrimental to the response

if the open loop zeroes are located in the right half of the

complex plane, becaue it would be unreasonable to expect per-

fect pole-zero cancellation. This is a problem typically

encountered in model following techniques when the plant has

zeroes in the right half plane.

From the root locus, figure 5-1, it can be seen that the

dynamic behavior of the SRFIMF controller is unchanged by the

introduction of a more complicated plant. We shall now consider

the time response of the closed loop system.

The controller and piant system was simulated using the

CSMP program discussed in section III. The source code is

listed in Appendix A. Simulation of the Harrier transfer

function is illustrated using a signal flow graph shown in

figure 5-2. The outputs of position, velocity and acceleration

are shown in the figure as part of the overall transfer function

% simulation. For the simulation, KRL was chosen to be 50, T was
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Acceleration Velocity Position
Output Output Output

/ .0615 .0615

.25 .0615

.25 .00189 .00189

1 1_ 1_ 1s(s S s
- N- Ie(s)

- 3  1

-.0665.00748

Figure 5-2 Harrier longitudinal signal flow graph transfer
function simulation.

0.1 sec, K and K were 3 and 4. Plots of the time histories

x x
of the closed and open loop position, e(t), as a result of

the simulation, are given in figure 5-3. The figure indicates

that the closed loop dynamic response is nearly identical to

that of the model as shown in figure 3-5.I

To evaluate the effect of the sensor noise, the state

H space representation of the system is required. Four states

represent the plant. Defining X1 and position and X2 as

velocity we write the transfer function for the Harrier, given

i11
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in equation 5-1 in matrix notation as

1 0 1 0 0 X0

2 0 0 1 0 X2  .25 8

x 0 0 0 1 X3  -.061 e
33

-.00747 -.06736 +.4495 -.4896 x4  .144344

5-2

The control vector of equation 5-2 is determined by the numera-

tor of equation 5-1 so that the states X and X are position

and velocity. The algorithm for determining the required

control vector is given by Ogata, reference (13].

The remaining state variables are defined in the following

way

X5 = output of the control actuator, input to the plant

X6 = output of the compensator

X7 = state variable representing velocity sensor error

X8 = state variable representing acceleration sensor
error

X9 = state variable representing position sensor error

Figure 5-4 is the schematic representation of the system and

from the figure the control law is obtained as

W(t) = -K X - KAX 2 - 3 - CPG X5 + X- -KX7 - 8 - KxX 9

5-3
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II

TS+1
13_

K a +4

t ' ' (Plant)

Figure 5-4 Schematic representation of the AV-8A Harrier pitch
axis with the SRFIMF controller. Including sensor noise.

Combining and expressing the system in matrix form, the closed

loop system is given by

X = AX + BQ 5-4

0 1 0 0 0 0 0 0

0 0 1 0 .2S 0 0 0 0

0 0 0 1 -.06115 0 0 0 0

.00748 -.0675 .45 -.4906 .1443 0 0 0 0

SA -KKxIT -KKi/T -K/f 0 -(.25K.I)/T K/r -K%/ l -K/ -KKXT

-K,/T -K/T -lI/T 0 -.25/T 0 -Ki/T -1/*l KXT

0 0 0 0 0 0 -1/T 0 0

-lT
0 0 0 0 0 0 0 -/T r  0

'L00 0 a 0 0 0 0 -I/Tri

r114 '11
I,



0 0 0

0 0 0

2 0/T 0 0
0 0 0 r

0 0 0 0 20 2 20
a r

o 0 0 2
0 0 2a/T

1 0 0 L pr

0 1 0

0 0 1
L

Having the system, represented in state space, the technique

used in the previous section can be applied. The general solu-

tion will be obtained for a unit value of sensor error standard

deviation and later applied to the specific sensor suits assumed

earlier. The constants required to obtain the numerical solu-

tion are: K = 20; T = 0.1; Kx = 4; Ki = 3; KRL = K-CPG/T = 50.

The resulting system is

= AX + BQ 5-5

Y = CX

X*= A*X* + B*Q 5-6

Y = C*X*

(Matricies A, B, C, A*, B* and C* are shown on the following pages.)

The result of the modal transformation is that the noise sources

have about the same controllability and observability as in the
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earlier cases. It can be seen from the A* matrix that the

closed loop system has two additional eigenvalues. These

correspond to the shifted poles of the system. Variance

analysis was done in the same way as in the earlier examples

and the results are shown plotted in figures 5-5 through 5-8

and tabulated in Appendix B, table B-4. Table 5-1 lists the

steady state values of the expected error in states X1 0, X 2
and X 5.

Position measurement error 0.98 0.36 3.85

Velocity measurement error 0.73 0.27 2.90

Acceleration measurement error 0.25 0.089 0.96

Table 5-1 Steady state values of a1, a 2 and a5
as a result of position, velocity and

acceleration measurement error.

Comparison of table 5-1 with table 4-2 indicates that the

values of the standard deviation of the X1and X2errors are

identical in both cases even though the two plants are very

different. The standard deviation of the plan input error

(X 5 here, X 3 in section IV) is slightly different in the two

cases. This should be expected because of the difference in

the value of control gain K, required to yield a value of KRL

equal to 50 and the large difference betwegn the two plants.

From the variance analysis, we obtain an estimate of the

expected errors in X 1 1, X 2 and X5which result from the sensor

suit assumed in section IV. These values are listed in table

5 -2.
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xl x 2  x 5

Inertial sensors 0.49 0.18/sec 1.93/sec2

Strapdown sensors 1.575 0.584/sec 6.26/sec2

Table 5-2 Standard deviation of steady state tracking
errors in Xl, X2 and X. as a result of sensor noise in
the Harrier aircraft.

The Significance of the total tracking error in X5 is

determined by comparing the standard deviation of the error

to the value of X5 when a 10 input is applied to the system.

In quiescent operation, a 10 step input results in an instan-

taneous value of X5 of

X5 = .0175rad 10 Kx K = 1.4 rad/sec
2

= 80/sec
2

The value of X5 given in table 5-2 for strapdown sensors

whose expected error is in the order of 10 is not large

compared to a 10 input. We conclude that sensor measurement

errors do not adversely affect the performance of the SRFIMF

Harrier pitch controller.

B. PITCH ATTITUDE GUST RESPONSE

The pitch attitude response of the Harrier from a gust

input will be considered by applying the same type of analysis

used earlier. For this purpose assume that the gust acts as

an additional, uncontrolled input to the system. The symbol

6& is used to denote this input. The gust input will be
g
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modeled as an exponentially correlated noise source in the

same way that the sensor noise was modeled. The schematic

representation of an external exponentially correlated noise

source was shown in figure 4-1. In this case the output of

the noise source, (s), is the gust input to the system and

Wt(s) is the white noise input of strength u as given by

equation 4-12. The standard deviation and correlation time

for the gust can be determined by examining the Dryden wind

model used in simulation by NASA. At altitudes of 500 ft.

and above the Dryden model assumes that the R4S value of

atmospheric turbulence, ag, is given as

ag = 0.2 Vwind

The corrleation time, Tg, is determined by a characteristic

length, Lw, divided by the vehicle speed, V, or

Tg = L w/V

The Dryden model gives the characteristic length of the

turbulence as

150 ft. + h = L
bw

where h is the altitude. Choosing 500 ft. as the flight

altitude, a flight speed of 60 kts and 15 kts as the value

of the wind, the standard deviation and correlation time is

ag= 5 ft/sec, Tg = 6.5 sec
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The gust input is represented schematically by figure 5-8.

2as + 1/Tg g (ft./sec)

Tg

Figure 5-8 Gust shaping filter.

The transfer function between the gust and position,

velocity and acceleration of the vehicle can be determined

from the stability derivatives given by reference [14]. For

This example we chose pitch attitude position control as was

done in the previous example therefore the denominator of the

gust transfer function is the same as the denominator of

equation 5-1. The numerator is given by McRuer [14] for a

vertical gust as

0 (Mq - M ) s + (MX - zw (M - M )s +

X (M + ZwMq) - X (V-M + ZuMq) 5-5u a w w u u

The stability derivatives foi the Harrier at 60 kts are (6)

Mq = -2.6bq

M = V'M = .54a W

z = -. 190

I!zu = -. 036

X = -0.43

% = -0.27

M = .022
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From equation 5-5 and 5-1, we obtain the transfer function

for the pitch attitude from a gust input

e(s) = -.0026s [s 2 + 2.31s + .073] 5-6

g s + .4896s 3 
- 4495s2 + .0636s + .00747

The transfer function from the pilot's stick to the pitch

angle is given by equation 5-1 where the input to the plant

is 6 e Expressing the plant, with multiple inputs of stick and

gust load, in matrix notation with states X1 and X2 defined as

position and velocity we have

50 -.0026

k2 0 0 1 0 X 2 + [2e -.047
1e 1

63 0 0 0 1 -.X [ 061 .00306

A .00747 -.06736 +.4495 -.489 X4  L.1443 .00345

The B matrix has been determined as before so that states

X1 and X2 represent position and velocity.

Having the plant transfer function defined by 5-7 we can

develope the equation to represent the closed loop controller.

The additional state variables required are defined

X 5 = output of the control actuator, input to plant

X = output of the compensator

X7 = gust input to the plant, g (s), figure 5-5.

The schematic of the closed loop system is shown in figure 5-9.
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Figure 5-9 Schematic representation of the AV-8A Pitch
control using a SRFIMF controller with wind gust input.

With Xc = 0, the control law W(t) is

W(t) = -KxX1 - KiX 2 - X3 - .25X 5 + X6 + e(K • .0026 +

.00473)X 7

Rearranging in a manner similar to earlier work, we write the

closed loop equation in matrix notation as

X = AX + BQ 5-8

0 1 0 0 0 0 -. 0026

0 a 1 0 .25 0 -.00473

0 o 0 1 -. 061 0 .00306

A = -. 00748 -. 0675 .45 -. 49 .1443 0 .00346

-K IKT/r -KKi/T -K/,r 0 -(.25.K+I)/T KIT (Ki.0026+.00473)K/T

-Kx/I -Ki/i -11T 0 -.25/t -Ki/t (K;..0026+.00473)/t

0 0 0 0 0 0 -I/Tg

r
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0

0

B= 0 2 a [20/Tgj1
0

0

1

The covariance of the states were calculated for the system

described above as was done in previous examples. The results

of the covariance analysis was that the RMS values of X1 and

X2 are very small and quickly reach the steady state values of

p = .0017 av =aX2 = .0134

In the case of the gust we are interested in the pitch accelera-

tion of the vehicle as a result of the gust input. Acceleration

is given as A and from equation 5-8 is

Acceleration = X3 + .25X - .00473X7  5-9

Recalling that the elements of the covariance matrix, P, are

the squares of the standard deviations of the state variables,

we write from equation 5-9 that

accel = P'3P + .25Pi 5 - .00473P

r , 127



The standard deviation in pitch acceleration as a result of

a gust input was plotted along with the gust input and the

RMS value of X5as a function of time in figure 5-7. The

results are also listed in Appendix B table B-5. The gust

is shown for comparison of response time.

it is seen from the figure that the rise time in the

RMS value of the vehicle acceleration is much slower than the

gust itself. This result can be interpretated as a smoothing

of the gust by the aircraft. This is primarily due to the

slow response of the aircraft to the gust. The controller

has a relatively fast reaction time and can maintain the

output X 1 with only very small errors as a result of a gust

input.

The analysis of the SRFIMF controller applied to the

Harrier has indicated that the qualities of the controller

found by analysis when the plant is assumed to be a second

order system apply equally well when the plant is an actual

VSTOL aircraft. We have also seen that the controller does

not produce undesireable dynamic response when the vehicle

is subjected to gust inputs and that the dynamic response of

the aircraft and controller is due to the response of the

aircraft alone to the gust.
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VI. CONCLUSIONS

The use of State Rate Feedback Implicit Model Following,

for the attitude control of VSTOL aircraft, has been studied.

The SRFIMF control scheme is simple, easy to implement and

can be expected to be reliable. It was shown that the

dynamic response of the closed loop system is a second order

response and that the natural frequency and damping are free

choices of the designer. It was also shown that sensor noise

does not adversely affect the operation of the system. Detailed

conclusions of this study are:

1. Model following wa~o shown in section III-D by simula-

tions to be very good. Despite changing plant dynamics,

representing a variety of flight conditions, the closed loop

system had a response characteristic of that of the model

and that the output of the closed loop system was driven to

the value of the input.

2. The frequency response of the system is that of a low

pass filter and that there was no phase shift between the

output and the input at low frequencies.

3. Non-minimum phase system, pole-zero cancellation can

lead to unstable performance.

4. High quality sensors are not required. It was shown

by the covariance analysis in section IV-B that the error in

position is approximately equal to the error in position
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measurement tplus 75 percent of the error in velocity measure-

ment plus 25 percent of the error in acceleration measurement.

The general result is that sensor errors do not adversely

affect the performance of the system.

5. Estimation of position and velocity by integration of

acceleration was shown to lead to unstable performance because

of neutrally stable modes resulting from the integration. It

was shown in section IV-C that acceleration sensor noise

disturbs the neutrally stable modes with the result that the

system diverges. It is then concluded that the quantities of

position and velocity must be measured in order to have a

stable system which does not require knowledge of the plant.

6. The system is capable of compensating for gust inputs.

The analysis of section V-C showed that the error in position

output was small as a result of the gust. Secondly, the

response of the system to the gust is smoothed by the action

of the uncontrolled plant.
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APPENDIX A

COMPUTER LISTINGS

* *** SRFIMF SIMULATION SOURCE CODE **

* CSMP SOURCE CODE USED TO SIMULATE THE RESPONSE OF
* THE SRFI4F AND A ARBITRARY SECOND ORDER PLANT
*, THE FUNCTIONS INTGRL AND REALPL ARE CSMP FUNCTIONS
*' WHICH PREFORM INTEGRATION OR SIMULATE A FIRST ORDER
* RESPONSE.THE ORDER OF THE STATEMENTS IS UNIMPORTANT IN
* CSMP.

II EXEC CSMPXV
//X.COMPRINT DD DUMMY
//X.SYSPRINT DD DUMMY
//X.SYSIN DD *

AS-REALPL (0 ,TOU, WS)
X=INTGRL(0,VX)
VX=INT^RL (O,AX)
AXI=REALPL(0,TOU IS)
AX=AXI*CPG-C*X-B*VX
IS=WS*K
WS=-KXD*VX+(XC-X) *KX VS
VS-AS-AX

,* SIMULATION OF TIE OPEN LOOP PLANT

XDD=CPG*A X2-C *XP- VXP*B
AXZ=REALPL(O.TOJtXCi
VXP=INTGL( 0, XO3)
XP=INTGRL (0,VXP)
XC=G*STEP (0)
G=I.
CPG=4.
TOU=. 1
K-5.
KXD=3.
KX=4.
Ba . 6
C=2.16

TIMER FINTIM=-09OUTDEL=.2
OUTPUT K xP
OUTPUT TIMEtXP
PAGE XYPLOT

END
STOP
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* ** HARRIER LONDITUDNAL SRFIMF CONTROL SIMULATION *

/EXEC CSMPXV
//X*COMPRINT DO DUMMY
//X.SYSPRINT 00 DUMMY
//X.SYSIN DO

* SIMULATION OF OPEN LOOP PLANT
*l=NGL00XP
X2P=INTGRL( 0.0 ,X2P)
X3P=INT'RL( 0.0,X4P)
X'PINT' RL(0.0vX4PDOT)
X4PDOT=.25*XC-.49*X4P4.45*X3P-.0665*X2P-.00748*X.P
ACCELP=-.0i89*XlP-.015625*X2P,.1144*X3P-.061*X4P+.25*XC
POSLTP=.00189*XIP..0615*X2P..25*X3P
VELP= .00189*X2P+.0615*X3P*.25*X4P

* CLOSED LJOP SYSTEM SIMULATIONJ

X.= INTGRL(0.OPX2)
XZ= INTGRL (0.0 X3)
X3=INTGRL (0.0,Xtt)
X4= INTGRL (O.O,X4DOT)
X.,DOT=X5-.49*X44.45*X3-.0665*X2-.00748*XI.
ACCEL=-.00189*Xl-.01b625*X2+. 1144t*X3-.061*X4+.25*X5
POSIT=.00189*Xl+.0615*X2+. 25*X3
VEL=.00139*X2+.0615*X3+.25*X4
X5=REALPL(O.0TJ, IS)
XC=STEP 10 .0 )
WS=-KXD*VX-KX*(XC-X )+VS
IS=K*WS
VS= AS-AX
AS=REALPLlO.0,TOJ, WS)
AX= ACCEL
VX=VEL
X=POSI T

KX=4.
KXD=3.
TOU=.l

TIMER FINTIM=l0,QUTDEL=.2
OUTPUT POSIT,POSITP
OUTPUT TIMEPPOSLT,PGSITP
PAGE XYPLOT

END
STOP
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APPENDIX B

TABULATED DATA

M M~~H O , d 0 L W W~ L r- -4 -4
0' 0 LA N tfl O N Ti c t- m N m~ m, M
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Time
Tiec ala '2a a3a

0 0 0 0

2.0 .530 .675 2.005

4.0 2.858 1.781 7.745

6.0 8.070 3.060 18.515

8.0 14.649 4.412 34.742

10.0 24.399 5.791 56.569

The rate of change in P, P after 10 seconds was

ap1  
0 P2 'p3

10.0 16.422 2.826 37.350

Table B-2

Tabulated data for figure 4-7.

b15

151

4



LA 0) - M r- 4 IV H - W 0
0~ 0l 1' 1 W NW Oi 00ll -4 H H

0m

> -4 CO 0 0 a 0 0 r-W -4 -( - 04
A N C ' Ni 11 a (N! l N a' "! Nl

04 00 010 0-4o C4 -4 4 ,--4 H

(N 0 4 ( ,1 (N a) (N (o -4 (N mN cN (n

0 0 0

0 0

H 0 0 0 (N ) 0 LA LA LA LA

Ul . .)

E4I- 0 m .-4 (N C04 u;A W a' H (

152



N OI N cj N m 0 v LO .o 'n
LnD 0 N N N N3 C a! C!

Ln C dl O
00

100

Ln

0

a m m rO~-4 0 n w In -40o
>O M ) Ln % %D - 0 %0 %. 0 kN NOr'4

IN 'O 'I N N N m C 0 D 0
0 44I

AL

0 0 '.0 CD CD C C di d' ' 0' O

IA n CD LD %D D r- 'D CD) 0) r- ND r, VD
> 00 0 0 - N0 0 0 0 0 0 0 0 0 L r-N

40 6 -4 m l v v In u) .0 %D 0 '0 r- 0,

ClID m 0 '0 C.0 '0 '0 '.4 W. '0 'ON
N4 .0 M 0 N N N N N N %D NC0

o0 C- N4a.4M M

U)U

E-4 I D 0 C C .6 I 0n In N04 L

04 ~- ~ ~' In In n I I In InI153



N d ~0 0, 0 w v w m 00 0
LA(~~N V LA r, N w w 00 0

M ' N -4 -I r- V -4 0 r-4 %D WD N O
C.)H 0 C4 0 N %D 0 .O 0 m A 00 0

00-4 -4 M Iq LA r, W . I
0D . * -4 (1 )n m VL

0)

4

4.4

0
4.4

'. r- CN N IV LA v. q Ul LA 0 w 0 tr- H N 0 N r- -4 N r- r-
Ln 0- C4N V W * 41

0 ... .... .... .... .... ....... -4 H, 4 4 N N r-t

0

4

-4

-4 -4 H 4 r4 N r4 -4 4 4 -
00 H H H H H H H H H H H .4

0 0 000 0 0 0000000.

1544



LIST OF REFERENCES

1. Merrick, V.K. and Gerdes, R.M., "Design and Piloted
Simulation of a VTOL Flight Control System," Journal
of Guidance and Control, v. 1 no. 3, May - June 1978.

2. NASA Technical Report 1040, Study of the Application of
an Implicit Model Following Fli ht Controller to Lift
Fan VTOL Aircraft, by V.K. Merrick, November 1977.

3. NASA Contractor Report 1519, Mathematical Model for
Lift/Cruise for V/STOL Aircraft Simulator Programming
Data, by M. P. Bland and B. Fajfar, 6 December 1976.

4. Tyler, J. S., Jr., "The Characteristics of Model Following
Systems as Synthesized by Optirral Control," IEEE Trans.
Automatic Control, v. 9 no. 4, p. 485-498, October 1964.

5. NASA Technical Note D-4663, On the Use of Algebraic
Methods in the Analysis and Design of Model-Following
Control Systems, by H. Erzberger, July 1968.

6. Nobel, B., Applied Linear Algebra, Prentice-Hall, 1969.

7. Melsa, J. L. and Jones, S. K., Computer Programs for
Computational Assistance in the Study of Linear Control
Theory, 2d ed., McGraw - Hill, 1973.

8. Speckhart, F. H. and Green, W. L., A Guide to Using CSMP -
The Continuous System Modeling Program, Prentice - Hall,
1976.

9. Maybeck, P. S., Stochastic Models, Estimation, and
Control, v. 1, Academic Press, 1979.

10. Analytical Mechanics Associates, Inc. Report No. 80-13,
An Investigation of Automatic Guidance Concepts to Steer
VTOL Aircraft to Small Aviation Facility Ships, Sorensen,
J., A., Goka, T., Phatak, A., Schmidt, S. F., July 1980.

11. Bryson, A. E., "Kalman Filter Divergence and Aircraft
Motion Estimators", Journal of Guidance and Control, v. 1
no. 1, January-February 1978.

155



12. Calspan Report AK-5876-F-I, A Study to Determine the
Feasibility of Simulating the AV-8A Harrier With the
X-22A Variable Stability Aircraft, J. V. Lebacqz and
F. W. Aiken, July 1976.

13. Ogata, K., Modern Control Engineering, Prentice - Hall,
1970.

14. McRuer, D., Ashkenas, I., and Graham, D., Aircraft
Dynamics and Automatic Control, Princeton University
Press, 1973.

1

15



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 67
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

4. Prof. D. J. Collins, Code 67fo 2
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

5. LT Lawrence E. Epley, USN
HELANTISUBRON LIGHT THRITY-THREE
NAS North Island
San Diego, California 92135

6. Dr. Tsuyoshi Goka
Analytical Mechanics Associates, Inc.
Suite 210
2483 Old Middlefield Way
Mountain View, California 94043

7. Prof. A. E. Fuhs, Code 67Fu
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

8. Mr. Vernon Merrick 5
Mail Stop N211-2
NASA Ames Research Center
NAS Moffett Field, California 94035

157

*1




